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We have studied the two-dimensional anisotropic Kondo necklace model with antiferromagnetic �AF�
Kondo coupling J� and exchange coupling between “itinerant” spins J on the square lattice. The bond operator
formalism is used to transform the spin model to a hard-core bosonic gas. We have used the Green’s function
approach to obtain the temperature dependence of spin excitation spectrum �triplet gap�. We have also found
the temperature dependence of the specific heat and the local spin-correlation function between localized and
itinerant spins for various Kondo couplings J� /J and anisotropies in both coupling strengths. Furthermore we
studied the temperature dependence of the structure factor for localized spins which is determined by effective
interactions via itinerant spins. For low temperature and close to the quantum critical point we have obtained
an analytical formula for temperature dependence of the energy gap and specific heat. Finally we compared our
results with those of previous mean-field treatments.
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I. INTRODUCTION

Heavy fermion compounds1–3 have received continued
attention, in particular their quantum critical behavior and
related superconducting properties. In these intermetallic
compounds, strongly correlated electrons in f orbitals are
hybridized with conduction electrons resulting in a strongly
enhanced quasiparticle density of states at the Fermi level.3

This is signified by a large value for Pauli susceptibility and
specific heat at low temperature.

The generic model which describes these properties is the
Kondo lattice model �KLM� with the Hamiltonian

HKL = t �
�ij�,�

�ci,�
† cj,� + h.c.� + J��

i

�iSi. �1�

The first part represents the kinetic energy of conduction
electrons ci,�

† with nearest-neighbor hopping t. The second
part is the Kondo term where �i is the spin of conduction
electrons and Si is the spin of localized moments. Suffi-
ciently above a characteristic temperature, T�, localized elec-
trons behave as a collection of independent free moments.
Below T�, the competition between Kondo-singlet coupling
and induced RKKY interactions may either lead to a para-
magnetic state with fully screened moments �J� / t
� �J� / t�c� or a long-range antiferromagnetic �AF� ordered
state with reduced moments �J� / t� �J� / t�c�. In the former
case a Landau Fermi-liquid state with large effective mass
appears below a coherence temperature TFL�T�, in the latter
AF order is stabilized below the Néel temperature TN�T�.
Changing the control parameter �J� / t� leads to a quantum
phase transition between these states at a “quantum critical
point” �QCP� given by �J� / t�c. Around the QCP there is a
V-shaped region �quantum critical region� in the phase dia-
gram where non-Fermi-liquid behavior in the thermody-
namic and transport properties is observed.2,4–6

Numerical methods including quantum Monte Carlo
�QMC� simulation,7 density-matrix renormalization-group

�DMRG� method8 have been used to investigate the thermo-
dynamic properties of the KLM in one dimension �1D� and
two dimensions �2D�. Finite temperature Lanczos method
�exact diagonalization method� for finite 2D clusters for the
KLM �Refs. 9 and 10� has also been used and temperature
dependence of specific heat, local Kondo screening and in-
tersite spin correlations have been obtained.

In the one-dimensional case11 the KLM model can be
mapped by Jordan-Wigner transformation to a pure spin
model. Instead of a kinetic term in HKL one has a XY-type
nearest-neighbor spin interaction for the “itinerant” elec-
trons. This procedure is not strictly possible in 2D or three
dimensions �3D�. But we can consider a KLM with corre-
lated conduction band by adding a Coulomb repulsion of
conduction electrons with strength Uc to suppress charge
fluctuations. This model has been treated within dynamical
mean-field theory approach12 �DMFT� where the spatial cor-
relations are neglected but the dynamics of interactions is
included. In this approach, at relatively high-temperature
conduction electrons are almost decoupled from the localized
electrons. With decreasing temperature, the particle-hole
symmetric model for half filling exhibits insulating behavior
with a gap in the one-particle spectral function whose size
increases with Uc. In addition, using a cumulant expansion
for the partition function, the charge and spin susceptibility
and specific heat for KLM with correlated conduction band
have been calculated.13 In the limit of very large Uc and half
filled conduction band, the kinetic term and strong Coulomb
repulsion are replaced by a spin exchange J=4t2 /Uc in the
insulating state. Strictly speaking the resulting effective spin
model is only appropriate for Kondo insulators where charge
degrees of freedom are frozen but one may expect that it also
describes the low energy spin dynamics of more metallic
Kondo systems. The generalized “Kondo necklace model”
�KNM� obtained in this way is given by14
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H = J�
�i,j�

��i
x� j

x + �i
y� j

y + ��i
z� j

z� + J��
i

��i
xSi

x + �i
ySi

y + ��i
zSi

z� .

�2�

In the present work we will study the finite temperature
properties in the anisotropic KNM for the first time. We have
implemented the bond operator formalism15,16 which has
been used before within mean-field approximation17,18 to de-
termine the quantum critical phase diagram. It should be no-
ticed that the mean-field approach fails to predict the quan-
tum phase transition in the anisotropic one-dimensional
model.19 In a more advanced treatment the KNM spin
Hamiltonian in Eq. �2� is mapped to hard-core bosonic gas
composed of four types of bosonic particles: three compo-
nents of a triplet and a singlet boson. The former are spin
excitations in the original model. In a previous work,20 we
obtained the energy gap of triplet excitation spectrum versus
J� /J and its dependence on the anisotropy parameters �� ,��.
For each set of anisotropy parameters we found the quantum
critical point where excitation energy vanishes. Here we will
investigate the temperature dependence for the excitation en-
ergy and calculate internal energy and specific heat. Further-
more we obtain local spin-correlation function and the static
structure factor from one and two-particle Green’s functions,
respectively.

Previously, thermodynamic quantum critical properties of
the anisotropic Kondo necklace model have been studied
within mean-field approach21,22 where the equation for the
lines separating quantum critical and paramagnetic or AF
regimes was derived analytically. Similarly expressions for
specific heat in the Kondo-singlet phase and quantum critical
region were found. We will compare these analytical results
with our numerical results from the hard-core boson Green’s
function approach. Results for the related bilayer isotropic
Heisenberg model have been previously obtained by the
same method and the specific heat around the QCP was in-
vestigated by using QMC simulations.23

II. BOSONIC HAMILTONIAN AND FINITE
TEMPERATURE GREEN’S FUNCTION

The Hamiltonian in Eq. �2� is written in terms of bond
operators15,16 as defined in Eqs. �3�–�13� of Ref. 20. The
bond operator transformation15,16 is applied in the anisotropic
Kondo necklace model of Eq. �2�. In the momentum space,
the noninteracting part of the Hamiltonian has the form20

H2 = �
k,�

Ak,�tk,�
† tk,� + �

k,�

Bk

2
�tk,�

† t−k,�
† + h.c.� , �3�

where tk,�
† and tk,� ��=x ,y ,z� are the creation and annihila-

tion of a triplet as a bond operator.20 The coefficients in the
above equation are

Ak,z = J� + �J�k, Ak,x�y� =
J�

2
�1 + �� + J�k,

Bk,z = �J�k, Bk,x�y� = J�k,

�k = �cos kx + cos ky�/2. �4�

The other parts of the Hamiltonian which describe triplet
boson interactions are represented by H3 and H4. The explicit
representation of H3 and H4 is given by Eqs. �7� and �8� in
Ref. 20. Both H3 and H4 are of higher order in triplet opera-
tors which lead to small corrections in the spectrum.20 There-
fore the effect of H3 and H4 is considered on a mean-field
level. The dominant contribution to the renormalization of
the spectrum comes from the constraint where only one of
the triplet states can be excited on every site �the boson hard-
core condition� t�i

† t�i
† =0, which can be taken into account by

introducing an infinite on-site repulsion between the bosons.
The boson hard-core condition in the momentum space is
given by

HU = U �
k,k�,q,�,�

t�k+q
† t�k�−q

† t�k�t�k, �5�

where k ,k� ,q are wave vectors and � ,� are the x ,y ,z com-
ponents. The Bogoliubov transformation,

t̃k,� = uk,�tk,� + vk,�t−k,�
† , �6�

diagonalizes the Hamiltonian �Eq. �3�� to

H2 = �
k,�

	k,�t̃k,�
† t̃k,�, �7�

where the triplet-mode frequencies 	��k���=x ,y ,z� in the
single-particle picture are given by

	k,�
2 = Ak,�

2 − Bk,�
2 , �8�

and the Bogoliubov coefficients are

uk,�
2 �vk,�

2 � = �− �
1

2
+

Ak,�

2	k,�
. �9�

In the previous work,20 we have considered the low-density
approximation for bosonic gas at zero temperature as a start-
ing point. A note is in order here that the generalization of
this method to finite temperature is valid if our consideration
is restricted to low temperatures; T�J� ,J.

The noninteracting normal Matsubara Green’s functions is
gn,��k ,��=−�T��tk,����tk,�

† �0��� and the anomalous Matsubara
bosonic Green’s function is ga,��k ,��=−��T�tk,�

† ���t−k,�
† �0���.

Using the Fourier transformation defined in the Ref. 24 the
normal and anomalous Green’s functions may be written as

gn,��k,i	n� =
uk,�

2

i	n − 	k,�
−

vk,�
2

i	n + 	k,�
, �10�

ga,��k,i	n� =
uk,�vk,�

i	n − 	k,�
−

uk,�vk,�

i	n + 	k,�
. �11�

The interacting Green’s functions are obtained from Dyson’s
equation for each Green’s function �anomalous or normal�.
The perturbation expansion and the implementation of
Wick’s theorem �contracting pairs of operators� are possible
only in the Matsubara representation.25 The simple poles of
the retarded Green’s functions are the one-particle excita-
tions of the model. It has been demonstrated24 that a simple
analytical continuation in the Fourier space can transform
Matsubara Green’s function to the retarded Green’s function
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which is correct for both interacting and noninteracting case.
The retarded Green’s function is

G�
Ret�k,t� = − i
�t���tk,��t�,tk,�

† �0��� , �12�

where the analytic continuation is obtained by the following
transformation

G�
Ret�k,	� = g��k,i	n → 	 + i�� . �13�

The spectral function which its peaks are the one-particle
excitations is related to the retarded Green’s function by

R��k,	� = − 2 Im�G�
Ret�k,	�� . �14�

The perturbative expansion for the interacting Green’s func-
tion in the Matsubara notation24 �for each polarization com-
ponent of the triplet bosons� is

ḡ�k,i	n� = g0�k,i	n��1 − g0�k,i	n��̄�k,i	n��−1. �15�

Similar to Ref. 20, the interacting Green’s function

�ḡ�k , i	n�� and the self-energy ��̄�k ,	�� are 2�2 matrices

ḡ�k,i	n� = �Gn�k,i	n� Ga�k,i	n�
Ga�k,i	n� Gn�− k,− i	n�

	,

�̄�k,i	n� = ��n�k,i	n� �a�k,i	n�
�a�k,i	n� �n�− k,− i	n�

	 .

�16�

The combination of Eqs. �10�, �11�, �15�, and �16� gives the
following relation for the interacting normal Green’s func-
tion

gn,��k,i	n� =
i	n + Ak,� + �n,��− k,− i	n�

�i	n + Ak,� + �n,��k,− i	n���i	n − Ak,� − �n,��k,i	n�� + �Bk + �a,��k,i	n��2 . �17�

To get the low energy �single particle� excitation spectrum,
the retarded form of Eq. �17� should be separated into the
bosonic single-particle excitation �collective modes of the
original spin model� and incoherent background. After ex-
panding the retarded self-energy in the low energy limit, the
single-particle part of Green’s function can be written in the
following form:

Gn,�
sp �k,	� =

Zk,�Uk,�
2

	 − 
k,� + i�
−

Zk,�Vk,�
2

	 + 
k,� + i�
, �18�

where the renormalized triplet spectrum and the renormal-
ized single-particle weight constants are given by


k,� = Zk,�

�Ak,� + Re��n,�

Ret�k,0���2 − �Bk,� + Re��a,�
Ret�k,0���2,

Zk,�
−1 = 1 − � � Re��n,�

Ret�
�	

	
	=0

,

Uk,�
2 �Vk,�

2 � = �− �
1

2
+

Zk,��Ak,� + Re��n,�
Ret�k,0���

2
k,�
. �19�

The renormalized weight constant is the residue of the
single-particle pole of the Green’s function.

III. EFFECT OF INTERACTING PARTS OF
HAMILTONIAN ON THE BOSONIC EXCITATIONS

The density of the triplet excitations is obtained from nor-
mal Matsubara Green’s functions:

��,i = �t�i
† t�i� =

1

N
�
k,�

��1 + 2nB�	k,���vk,�
2 + nB�	k,��� , �20�

where nB�	� is the Bose-Einstein distribution and N is the
number of the unit cells in the square lattice. Since the
Hamiltonian HU in Eq. �5� is short ranged and U is large, the
Brueckner approach �ladder diagram summation�25 can be
applied for low temperature and low-density limit of the trip-
let boson gas. Generally, it is similar to the approach imple-
mented in Ref. 26, however, technically it is more demand-
ing due to the effect of anisotropies �� ,�� and finite
temperature. The interacting normal Green’s function is ob-
tained by imposing the hard-core boson repulsion. First, we
introduce the scattering amplitude ���,���p1 , p2 ; p3 , p4� of
triplet bosons where pi= �p , �ipn��i, pn= 2n�

� . The scattering
amplitude or self-energy for the two-particle Green’s func-
tion depends on the total energy and momentum of the in-
coming particles. The nonretarded and local character of U
leads to ���,��=�������. The basic approximation made in
the derivation of ��K� is that we neglect all anomalous scat-
tering vertices, which are present in the theory due to the
existence of anomalous Green’s functions. According to the
Feynman rules in momentum space at nonzero temperature
and after taking the limit U→� we can write for the scatter-
ing amplitude �in Fig. 1 of Ref. 20�,

���,���K,i	n� = � 1

��2��3�
Qm


 d3Qg��
0 �Q�g��

0 �K − Q�	−1

.

�21�

where, p1+ p2= p3+ p4�K= �K , i	n�. To find the solution
self-consistently, we should replace �the noninteracting�
g0→g �by the interacting Green’s function� in Eq. �21�. We
use the Lehmann representation or fluctuation-dissipation
theorem24 which relates the Matsubara Green’s function �for
both interacting and noninteracting Green’s function� to the
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spectral function,

g��k,i	n� = 

−�

� d	

2�

R��k,	�
i	n − 	

,

R��k,	� = − 2 Im�GRet�k,	�� . �22�

The scattering amplitude � in Eq. �21� is obtained as �see
Appendix A�,

���,���K,i	n� = − � 1

�2��3
 d3Q�uQ,�
2 uK−Q,�

2 � nB�	Q,��
i	n − 	Q,� − 	K−Q,�

−
nB�− 	K−Q,��

i	n − 	K−Q,� − 	Q,�
	

− uQ,�
2 vK−Q,�

2 � nB�	Q,��
i	n − 	Q,� + 	K−Q,�

−
nB�	K−Q,��

i	n + 	K−Q,� − 	Q,�
	 − vQ,�

2 uK−Q,�
2 � nB�− 	Q,��

i	n + 	Q,� − 	K−Q,�

−
nB�− 	K−Q,��

i	n − 	K−Q,� + 	Q,�
	 + vQ,�

2 vK−Q,�
2 � nB�− 	Q,��

i	n + 	Q,� + 	K−Q,�
−

nB�	K−Q,��
i	n + 	K−Q,� + 	Q,�

	�	−1

. �23�

The normal self-energy is then obtained by using the vertex function of Eq. �23�,

���
U �k,i	n� = − �

��
�
pm


 d3p

��2��3���,���p,k;k,p�g���p,ipm� − �
��

�
pm



−�

� d3p

��2��3���,���p,k;p,k�g���p� . �24�

Using the result of Eq. �22� for spectral densities, the x component of the self-energy is given by

�xx
U �k,i	n� =

3

�2��3
 d3p�up,x
2 nB�	p,x��xx,xx�p + k,	p,x + i	n� − vp,x

2 nB�− 	p,x��xx,xx�p + k,− 	p,x + i	n��

+
1

�2��3
 d3p�up,z
2 nB�	p,z��xz,xz�p + k,	p,z + i	n� − vp,z

2 nB�− 	p,z��xz,xz�p + k,− 	p,z + i	n�� . �25�

We can simply obtain the retarded self-energy by analytic
continuation �i	n→	+ i�� of Eq. �25�. The analytical con-
tinuation in � �Eq. �23�� creates a term of i� in the denomi-
nator of each fraction. According to Cauchy’s theorem only
the principal part � 1

x+i� = Pr . 1
x − i���x�� will contribute, and

the imaginary part of the self-energy vanishes. The frequency
�	� is very small and the model is treated close to the quan-
tum critical point �but not at this point� which leads the val-
ues of 	Q,� be different from 	 except at the critical point.
Consequently, for low energy limit, the spectral function for
the triplet bosons has sharp peaks in the excitation spectrum
�Eqs. �18� and �19��. Generally, this spectrum is a function of
temperature.

H3 is much smaller than HU, thus we can consider the
effect of H3 on the excitation spectrum in the second-order
perturbation theory. After algebraic calculation for Dyson’s
series and using the Feynman rules for nonzero
temperature25 we can obtain the second-order self-energy
due to H3. The formula for the self-energy contribution �ei-
ther normal or anomalous� is quite lengthy and has been
given in Appendix B.

The contribution of H4 on the final results is very small
because it is composed of quartic terms in the triplet opera-
tors. It is therefore treated in mean-field approximation. This
is equivalent to take only the one-loop diagrams into account
�first order in J�. On the mean-field level we have O1O2
= �O1�O2+ �O2�O1− �O2��O1� where each O1 and O2 is a pair
of boson triplet operators. We can write for each pair of
operators,

�ti,�
† tj,�� = −

1

�N
�

n
�

k

eik.�Rj−Ri�−i	n0+
Gn

���k,i	n�

=
1

N
�

k

eik.�Rj−Ri���1 + 2nB�	k,���vk,�
2 + nB�	k,��� ,

�ti,�
† tj,�

† � =
1

N
�

k

eik.�Rj−Ri�uk,�vk,��1 + 2nB�	k,��� . �26�

Thus, the effect of H4 is to renormalize A and B coefficients
according to the following relations,

Ak,z → Ak,z + 2J�k
1

N�
q

��1 + 2nB�	q,z��vq,z
2 + nB�	q,z���q,

Bk,z → Bk,z − 2J�k
1

N�
q

uq,xvq,x�1 + 2nB�	q,x���q,

Ak,�x,y� → Ak,�x,y� + J�k
1

N�
q

��vq,�x,y�
2 �1 + 2nB�	q,x��

+ vq,z
2 �1 + 2nB�	q,z�� + nB�	q,z� + nB�	q,x���q,

Bk,�x,y� → Bk,�x,y� − J�k
1

N�
q

��uq,�x,y�vq,�x,y��1 + nB�	q,x��

+ uq,zvq,z�1 + nB�	q,z����q. �27�

REZANIA, LANGARI, AND THALMEIER PHYSICAL REVIEW B 79, 094401 �2009�

094401-4



The renormalized coefficients �Eq. �27�� will be considered
to calculate the normal and anomalous self-energy which are
independent of energy �nonretarded in time representation�.

IV. INTERNAL ENERGY

First, we obtain the internal energy �E� in terms of one-
particle Green’s function by the equation of motion. Then,
the specific heat is obtained from the temperature derivative
of internal energy, CV= �E

�T . The Hamiltonian H=H0+H1 is
divided into the noninteracting �H0� and interacting �H1�
parts, where H0=HJ�

, H1=HJ+HU+H3+H4. Here, the ex-
change interaction between the local and itinerant electron
spin is decoupled into two parts according to H2=HJ�

+HJ.
In this respect, we can define the thermal average of the
interacting part to the single-particle Green’s function. To do
so, we multiply the equation of motion for the annihilation
operator � d

d� ti,�= �H , ti,��� from the left side by a creation
operator

lim�1→�+
1

2�
i,�
�ti,�

† ��1�
d

d�
ti,���� +

d

d�1
�ti,�

† ��1��ti,�����
+ �

i,�=x,y
ti,�
† � J��1 + ��

2
�ti,� + �

i

ti,z
† J�ti,z

= − 2�HU + H4� − HJ −
3

2
H3

= − �2�HU + H4 + H3 + HJ� − ns
��HU + H3 + HJ�

�ns
� . �28�

In the above equation ns= �s�, where s is the singlet operator.
We can neglect �

�s2 �H1� in Eq. �28� based on the fact that s
=1. After writing the left-hand side of Eq. �28� in terms of
normal Green’s functions, ensemble average of interacting
parts of Hamiltonian is written as

�HU + H3 + H4 + HJ� =
N

2�

 d2k

�2��2�
n

ei	n0+

�� �
�=x,y

J��1 + ��
2

G�
n�k,i	n� + J�Gz

n�k,i	n�	 . �29�

Adding the ensemble average of H0=HJ�
to Eq. �29� and

after using the Lehmann representation and summing over
Matsubara frequencies, we finally obtain the thermal average
of the Hamiltonian �internal energy� as

E =
N

2

 d2k

�2��2� �
�=x,y

J��1 + ��
2

�Zk,�Uk,�
2 nB�
k,��

− Zk,�Vk,�
2 nB�− 
k,��� + J��Zk,zUk,z

2 nB�
k,z�

− Zk,zVk,z
2 nB�− 
k,z��	 , �30�

where N is the number of unit cells.

V. ANALYTICAL CALCULATION OF TEMPERATURE-
DEPENDENT ENERGY GAP AND SPECIFIC HEAT

In the vicinity of the antiferromagnetic wave vector ��p
−q0��1� where q0= �� ,�� and close to the quantum critical
point, the low-temperature excitation spectrum �the x com-
ponent for anisotropic case� can be written

	p,x = 
Eg
2�T� + cx

2�p − q0�2, �31�

where cx is the spin-wave velocity.23,26–28 The latter is the
slope of dispersion of the x-component excitations close to
q0 and will be calculated numerically. To find the energy gap
we should consider the excitation energy at the wave vector
q0

Eg
2�T� = �Aq0,x

2 �T� − Bq0,x
2 �T��Zq0,x, �32�

where Aq0,x ,Bq0,x are coefficients in the one-particle part of
the Hamiltonian which has to be renormalized by self-
energies of the interacting parts. Now, we consider the varia-
tion with temperature, keeping J and J� fixed close to the
quantum critical point.

Aq0,x�T� = Aq0,x�T = 0� + ��n,x
U �q0� + ��n,x

3 �q0� + ��n,x
4 �q0� ,

Bq0,x
c �T� = Bq0,x

c �T = 0� + ��a,x
3 �q0� + ��a,x

4 �q0� , �33�

where �X means the variation of X with respect to the tem-
perature. The identity Aq0,x

c �T=0�=−Bq0,x
c �T=0� holds at zero

temperature. If we substitute Eq. �33� into Eq. �32� and ne-
glect terms quadratic in Eg the variation of Aq0,x

c �T=0� and
Bq0,x

c �T=0� must vanish. We now have to obtain the variation
of each of the terms present in Eq. �33�. In the first step, we
calculate the variation of the self-energy related to HU which
is given by

��x
U��,�� = 3
 d2p

�2��2 � ��1 + nB�
p,x��vp,x
2 �xx,xx

��p + q0,− 	q,x� + nB�
p,x�up,x
2 �xx,xx

��p + q0,	p,x�� , �34�

where we have assumed �vp,z
2 =0. Indeed for 0���1 the z

component of the spectrum has a finite gap when the x com-
ponent becomes gapless at the quantum critical point. To
implement Eq. �31� we can change the variable p in Eq. �34�
to q by p−q0→q where q is the distance from the antiferro-
magnetic wave vector �q0� and q�

Eg�T�
c �1. The x compo-

nent of the vertex function for small q can be written as
�xx,xx�q ,−	q,x���xx,xx

c �0�. Therefore, Eq. �34� is reduced to

��x
U��,�� = 3
 d2q

�2��2 � ��1 + 2nB�
q,x��vq,x
2

+ nB�
q,x���xx,xx
c �0� . �35�

Integrating over q gives the variation of self-energy as
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��x
U��,�� = −

3�xx,xx
c �0�Aq0,x

c Zq0

c

4�cx
2 


Eg�0�

Eg�T� �1 +
2

eEg�T�/T − 1
	dEg.

�36�

Similar relations to Eq. �36� also exist for ��n,x
3 �� ,��,

��n,x
4 �� ,��. The true excitation at finite temperature is given

by minimizing Eq. �32� which is equivalent to put the sum-
mation of all variations to zero. It finally leads to

Eg�T�
T

=
Eg�T = 0�

T
+ 2


Eg�T�/T

� dy

ey − 1
. �37�

After a simple integration of Eq. �37� we obtain the analytic
solution

Eg�T� = 2T sinh−1�ey/2/2� � Tf�y� , �38�

where y=Eg�T=0� /T. To find an analytical form for the spe-
cific heat, we use the energy variation �E=�
k,��nB�
k,��,
in analogy to the Landau theory of Fermi liquids. Using Eqs.
�32� and �38�, the specific heat is obtained for low tempera-
tures �T�J ,J�� and close to the quantum critical point23

Cv =
2

3
CV

0��Eg�T = 0�
T

	T2, �39�

where CV
0 � 3��3�

2�cx
2 is the specific heat for gapless boson gas

with linear dispersion 	=cxk and � is given by

��y �
Eg�T = 0�

T
	

=
1

2��3�
f�y�

� dy1y1ey1

�ey1 − 1�2�y1
2 − f2�y� + yf�y�

df�y�
dy

	 .

�40�

At the quantum critical point y→0 then ��y� is a constant.
The contribution of the z component excitation of triplets is
negligible in comparison with the x component. Because of
the anisotropy, the energy gap of z component is greater than
the energy gap of the x component and according to the
quadratic exponential function of energy gap in the denomi-
nator of the Eq. �40�, we can approximately neglect the con-
tribution of the z component in the specific heat.

VI. SPIN CORRELATIONS AND STATIC STRUCTURE
FACTOR FOR LOCALIZED SPINS

The spin-correlation function between a localized and an
itinerant spin on a single bond can be expressed in terms of
the expectation value of bond operators which can be related
to the one-particle Green’s function,

� �
1

N
�
i,�

��i,�Si,�� = −
3

4
+

1

4N
�
k,�

�tk,�
† tk,��

= −
3

4
+

1

4N
�
k,�

��1 + 2nB�
k,���Vk,�
2 + nB�
k,��� . �41�

However, the spin-correlation function between localized

spins on different bonds or itinerant ones is expressed in
terms of two-particle Green’s function. First, we calculate the
Matsubara representation for dynamical spin susceptibility.
Because in this framework Wick’s theorem can be applied
and we can use a simple analytical continuation for finding
the retarded representation and finally obtain the static struc-
ture factor. According to the linear-response theory, the diag-
onal spin susceptibility for localized spins is written by

��,��q,	� = 

−�

+�

dtei	t��S��q,t�,S��− q,0���

= − limi	n→	+i0+ 

0

�

d�ei	n��TS��q,��S��− q,0��

= ��,��q,i	n → 	 + i0+� . �42�

Fourier transformation of localized spin in terms of bosonic
operators is

S��q� =
1

2�t−q,� + tq,�
† − i�����

k

tk+q,�
† tk,�	 . �43�

Therefore, spin susceptibility is given by

��,��q,�� = − �TS��q,��S��− q,0��

= 2ga,��q,�� + gn,��q,�� + gn,��q,− �� + g�2��q,�� ,

�44�

where g�2� is the two-particle Green’s function for triplet gas.
The combination of Eqs. �42� and �44� gives the following
relation for the spin susceptibility

��,��q,i	n� = 2� uq,�vq,�

i	n − 	q,�
−

uq,�vq,�

i	n + 	q,�
	 +

uq,�
2

i	n − 	q,�

−
vq,�

2

i	n + 	q,�
+

vq,�
2

i	n − 	q,�
−

uq,�
2

i	n + 	q,�

+ 

0

�

d�ei	n�g�
�2���� . �45�

In Appendix C we have presented the two-particle Green’s
function for z-component. From the expression in Eq. �45�
the static structure factor may be obtained as shown in Ap-
pendix C.

VII. NUMERICAL RESULTS

The single-particle excitation should be found from a self-
consistent solution of Eqs. �19�, �23�, �25�, �27�, and �B1�
with the substitutions uk,�→
Zk,�Uk,�, vk,�→
Zk,�Vk,�,
	k,�→
k,� in the corresponding equations. The process is
started with an initial guess for Zk,� ,�n,��k ,0� ,�a,��k ,0� and
by using Eq. �19� we find corrected excitation energy and the
renormalized Bogoliubov coefficients. This is repeated until
convergence is reached. Using the final values for energy
gap, renormalization constants and Bogoliubov coefficients,
we can calculate the structure factor by Eqs. �41� and �C11�
and the internal energy given in Eq. �30�.

The specific heat for the 2D isotropic Kondo necklace
model versus kT /J and for various J� /J has been plotted in
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Fig. 1. Since our approach is based on strong-coupling limit
the value of exchange coupling is restricted to J� /J
� �J� /J�c where �J� /J�c is the quantum critical point at zero
temperature. Each curve shows an exponential decay at low
temperatures which manifests the presence of a finite-energy
gap. Larger values of J� /J show more rapid decay corre-
sponding to larger energy gap. There is also a peak in the
specific heat which moves to higher temperature upon in-
creasing J� /J. This is similar to the behavior of peak versus
the local exchange coupling which has been observed for the
Kondo lattice model.9 The position of the peak �T_max /J�
should correspond to an energy scale which represents the
crossover from Kondo-singlet phase to the quantum critical
region. We have plotted the value of T_max /J versus J� /J as
an inset of Fig. 1. The effect of anisotropy has been shown in
Fig. 2 where we have plotted the specific heat for ��
=1, �=1� and ��=1, �=0�. Our data show that the height
of the peak in the specific heat increases for �=0 compared
with �=1. Moreover, the exponential decay at low tempera-
ture is reduced for �=0.

We have also compared the energy gap obtained from the
self-consistent numerical solution of the Brueckner equations
with the analytical relation given in Eq. �38�. Our result is
plotted in Fig. 3. It shows that both methods agree for low
temperatures and start to deviate for T /J�0.3. This means
that for low temperatures T /J�0.3, the single-particle exci-
tations are not affected by the temperature dependence of the
self-energy. However, for higher temperatures the latter leads
to excitation energies which deviate from those at zero tem-
perature.

The local spin-correlation function ��� between localized
and itinerant spins versus temperature is shown in Fig. 4. The
value of � increases with the local exchange coupling J�. On
the other hand an increase in temperature reduces the local
spin correlations. The value of � can be used as a criterion

for the screening of the localized moments by itinerant spins.
In the Kondo lattice model the rapid increase in � below a
particular temperature TFL signifies the onset of Fermi-liquid
behavior in the thermodynamic and transport properties. We
have also presented the static structure factor �S�� ,��� for
localized spins at the AF wave vector. This function is a
measure for the tendency to AF ordering in the localized
spins induced by effective interactions via itinerant spins.
The static structure factor grows on approaching the quan-
tum critical point which separates Kondo singlet and AF
phase. This may be seen from the numerical results for static
structure factor which are presented in Fig. 5. We have also
calculated � and S�� ,�� for different anisotropies which
show similar qualitative behavior to the isotropic case.
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FIG. 1. �Color online� The variation in specific heat CV versus
kT /J for different J� /J in the isotropic Kondo necklace model ��
=1, �=1�. An increase in J� /J increases the singlet-triplet gap
which extends the exponential decay of the specific heat at low
temperature. The inset shows the position of the maximum in the
specific heat �Tmax /J� versus J� /J �the same unit of the main fig-
ure� which corresponds to the crossover between the Kondo-singlet
phase and quantum critical region.
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FIG. 2. �Color online� The comparison of specific heat �Cv� in
the coupling constants J� /J=1.6,1.7,1.8 for two types of anisotro-
pies, �=�=1 and �=0,�=1. The dashed lines are related to �
=0,�=1 and solid lines correspond to �=1,�=1. The reduction of
� increases the peak height of the specific heat and reduces the
energy gap.
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FIG. 3. �Color online� The comparison between self-consistent
numerical solution and analytical formula for energy gap Eg�T� /J�

versus kT /J and coupling constant J� /J=2 in the isotropic Kondo
necklace model.
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VIII. DISCUSSION AND CONCLUSION

We have shown that the hard-core boson approach to the
Kondo necklace model can be systematically extended to
finite temperatures. The basic assumption used is the low
density of triplet excitations. This is naturally justified for
moderate temperatures T�J ,J�. Even close to the QCP
when the gap closes this assumption is still justified due to
the small phase space of the soft triplet mode. We have used
self-consistent diagrammatic approach to find nonzero tem-
perature triplet excitation in KNM. Due to the low triplet
density we have neglected anomalous Green’s function in the
scattering amplitude ��� for obtaining normal self-energy
which is a considerable technical simplification.

The low-temperature behavior of thermodynamic quanti-
ties is mostly determined by excitations around the gap
threshold for a given T and J� /J in the singlet phase above
the QCP value �J� /J�c�1.41 �in the isotropic case�. There-
fore the specific heat is expected to show a peak anomaly
when the temperature falls below Eg and the triplet excita-

tions become thermally depopulated. The peak appears at a
temperature which is fraction of Eg. When the control param-
eter J� /J increases the singlet becomes more stable and the
gap Eg increases. Therefore the maximum in C�T� shifts to
higher temperatures. This change in peak position in terms of
exchange coupling J� has been found in the KLM with cor-
related conduction band by cumulant expansion for the par-
tition function.13 This result is also obtained by finite tem-
perature Lanczos method in the KLM.9 According to mean-
field calculation for finite temperature KNM,21,22 the low-
temperature limit of specific heat in 2D is proportional to
�1 /T�e−Eg�T�/T. The exponential low-temperature decay is
clearly present in Fig. 1 but it is not possible to confirm the
prefactor from our numerical calculations. We should note
that due to finite numerical resolution the gap Eg will not
scale exactly to zero at the QCP therefore the exponential
decay will always remain at the lowest temperatures.

The bond spin-correlation function shown in Fig. 4 is a
measure of the Kondo-singlet state. Close to the QCP, it
competes with the induced intersite spin interactions which
try to break the singlet. Indeed one observes that the value of
��� ���0� decreases from its maximum 0.75 �corresponding
to complete singlet condensation s̄=1� in the strong-coupling
regime to 0.725 when T ,J� /J is close to the QCP. This may
seem surprisingly little change. However already on the
mean-field level it was noticed that the singlet amplitude
close to the QCP is only slightly reduced from s̄=1 and this
remains so even considerably in the AF regime.18 This con-
firms that the starting assumptions of the hard-core boson
approach �low density of triplets� is sound. Naturally the
local singlet correlations are weakened when temperature is
enhanced. This explains the monotonic decrease of ��� in
Fig. 4 for all values of J� /J.
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βk + q ,

k ,

FIG. 6. Random phase approximation part for the first term of
the two-particle Green’s function in Eq. �C1�.

α

β q

q

k + q ,

k ,

FIG. 7. RPA part for the second term of the two-particle Green’s
function in Eq. �C1�.
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FIG. 4. �Color online� The local spin-correlation function � ver-
sus kT /J and for various amounts for J� /J in the isotropic Kondo
necklace model.
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FIG. 5. �Color online� The static structure factor S�� ,�� versus
kT /J and for various amounts for J� /J in the isotropic Kondo neck-
lace model.
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The temperature dependence of the static structure factor
s�Q� at Q= �� ,�� is quite instructive for the evolution of
magnetic correlations in the KNM. The localized spins Si in
Eq. �1� have no direct interaction. Their interactions are in-
duced via the intersite interaction J of itinerant spins �i. The
latter however are in singlet bonds with the localized spins
due to the local coupling J�. Therefore as long as J� /J is
large it is hard to polarize the singlets and induce intersite
interactions between the Si spins. This means that AF corre-
lations between the latter will be weak and only a very broad
maximum in s�Q� develops at a temperature corresponding
to the typical AF fluctuation energy. As J� /J is reduced the
AF intersite correlations are induced more easily, conse-
quently the maximum in s�Q� becomes more pronounced
and shifts to lower temperatures. Note however that on ap-
proaching the QCP �J� /J�c from above the characteristic
temperature at maximum AF fluctuations does not go to zero.
This is because not only the soft mode at Q but excitations in
the vicinity of the AF wave vector contributes to the AF
fluctuations.

In the previous mean-field treatments of the KNM �Refs.
17 and 18� we were able to treat both the Kondo singlet and
the AF ordered phase within the bond operator approach.
This is possible because even in the AF phase where triplets
are condensed �t̄�= �tk,���0� one has t̄�� s̄ as long as one is
not too far in the AF regime. In principle this should also be
possible in the hard-core boson approach. But the technical
difficulties are considerable and have prevented this analysis
for the AF state even at zero temperature.20 It would however
be rewarding to derive both the temperature dependence of
the AF structure factor as in Fig. 5 and the AF order param-
eter for values of J� /J below the QCP.
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APPENDIX A: MATSUBARA FREQUENCY SUMMATION

In this Appendix, we want to perform the following sum-
mation over Matsubara frequencies Qm=2m� /� in Eq. �21�:

S =
1

�
�
Qm

g���Q�g���K − Q� . �A1�

With the help of Eq. �22�, Eq. �A1� may be written as

S = 

−�

� d	

2�
R��Q,	�


−�

� d�

2�
R��K − Q,��

�
1

�
�
Qm

1

iQm − 	

1

i	n − iQm − �
. �A2�

The summation may be performed in the usual way by inte-
grating around a contour in complex-frequency plane.25 The
result is

1

�
�
Qm

1

iQm − 	

1

i	n − iQm − �

= − � nB�	�
i	n − 	 − �

−
nB�− ��

i	n − � − 	
� . �A3�

According to Eq. �22� the spectral functions in Eq. �A2� are
written by

R��Q,	� = − 2 Im�G�
Ret�Q,	��

= 2�ZQ,��UQ,�
2 ��	 − 
Q,�� − VQ,�

2 ��	 + 
Q,��� ,

R��K − Q,�� = − 2 Im�G�
Ret�K − Q,���

= 2�ZK−Q,��UK−Q,�
2 ��� − 
K−Q,��

− VK−Q,�
2 ��� + 
K−Q,��� . �A4�

Then, inserting Eqs. �A4� and �A3� in Eq. �A2� we get Eq.
�23� for �.

APPENDIX B: SELF-ENERGY DUE TO H3

In this appendix, we present the normal and anomalous
part of self-energy for the x ,z components in the second-
order perturbation theory with respect to H3. The final result
for self-energies is given by

�3,x
n �k,i	n� = −

J2

2N
�

q
�uq,y

2 uk+q,z
2 �nB�	q,y� − nB�	k+q,z�

i	n + 	q,y − 	k+q,z
	�− �k

2 + 2�k�q − �q
2� + uq,z

2 uk+q,y
2

��nB�	q,z� − nB�	k+q,y�
i	n + 	q,z − 	k+q,y

	�− �k
2 + 2��k�q − �2�q

2�� −
J2

2N
�

q
�uq,y

2 uk+q,z
2 �nB�	q,y� − nB�− 	k+q,z�

i	n − 	q,y − 	k+q,z
	

��− �2�k+q
2 + ��q�k+q� + uq,z

2 uk+q,y
2 �nB�	q,z� − nB�− 	k+q,y�

i	n − 	q,z − 	k+q,y
	�− �k+q

2 + ��q�k+q�� ,

q
β

α

β

α
q

q − k ,p ,

q − p , k ,

Γ

FIG. 8. Vertex correction part for the first term of the two-
particle Green’s function in Eq. �C1�.

GREEN’s FUNCTION APPROACH TO THE… PHYSICAL REVIEW B 79, 094401 �2009�

094401-9



�3,x
a �k,i	n� = −

J2

2N
�

q
�uq,y

2 uk+q,z
2 �nB�	q,y� − nB�	k+q,z�

i	n + 	q,y − 	k+q,z
	�− �k

2 + ��k�q+k + �k�q − ��q�k+q�

+ uk+q,y
2 �nB�
q,z� − nB�	k+q,y�

i	n + 	q,z − 	k+q,y
	�− �k

2 + �k�q+k + ��k�q − ��q�k+q�� ,

�3,z
n �k,i	n� = −

J2

N
�

q
�uq,x

2 uk+q,x
2 �nB�	q,x� − nB�	k+q,x�

i	n + 	q,x − 	k+q,x
	�− �q

2 + 2��k�q − �2�k
2�

+ uq,x
2 uk+q,x

2 �nB�	q,x� − nB�− 	k+q,x�
i	n − 	q,x − 	k+q,x

	�− �q
2 + �q�q+k�� ,

�3,z
a �k,i	n� = −

J2

N
�

q

uq,x
2 uk+q,x

2 �nB�	q,x� − nB�	k+q,x�
i	n + 	q,x − 	k+q,x

	���k�q − 2�q�k+q + ��k�k+q − �2�k
2� . �B1�

In the self-energies of H3 we only consider terms which are
proportional to u4, because in the low-density limit of the
triplet bosons, they are the dominant terms.

APPENDIX C: TWO-PARTICLE GREEN’S FUNCTION g(2)

FOR z-COMPONENT SPIN

The two-particle Green’s function g�2� for the
z-component spin is defined by

gz
�2��q,�� = �

k,p
�T�tk+q,x

† ���tk,y���tp−q,x
† �0�tp,y�0���

− �T�tk+q,x
† ���tk,y���tp−q,y

† �0�tp,x�0���

+ �x → y,y → x� . �C1�

Now, we define the off-diagonal one-particle density of trip-
let bosons

�xy�q,�� = �
k

tk+q,x
† tk,y . �C2�

Therefore, two-particle Green’s function can be expressed by
the following relation

gz
�2��q,�� = �T��xy�q,���xy�− q,0��� − �T��xy�q,���yx�− q,0���

+ �x → y,y → x� . �C3�

To consider the correction effects on the loop of two-particle
Green’s function we should add two parts. �1� We can sepa-

rately consider the correction in the interacting terms includ-
ing HU for each of the lines of the bubble which are repre-
sented in Figs. 6 and 7. These are similar to random-phase
approximation �RPA� �Ref. 24� for the charge response func-
tion in the electron gas. �2� Considering vertex corrections
according to Figs. 8 and 9 for each of Figs. 6 and 7. After
summation over Matsubara frequencies the RPA part for the
first term in Eq. �C1� which is represented in the Fig. 6 may
be written as

1

�
�
k,m

ga,��k − q,i	n − ikm�ga,��k,ikm�

= −
1

N
�

k

Zk−q,�Zk,�Uk−q,�Vk−q,�Uk,�Vk,�

��nB�
k,�� − nB�− 
k−q,��
i	n − 
k−q,� − 
k,�

−
nB�− 
k,�� − nB�− 
k−q,��

i	n − 
k−q,� + 
k,�

−
nB�
k,�� − nB�
k−q,��

i	n + 
k−q,� − 
k,�
+

nB�− 
k,�� − nB�
k−q,��
i	n + 
k−q,� + 
k,�

	 .

�C4�

Furthermore, RPA part for the second term of Eq. �C1� is
represented in Fig. 7 and is given by

q

q
k ,βp ,β

ααq − p , q − k ,

Γ

FIG. 9. Vertex correction part for the second term of the two-
particle Green’s function in Eq. �C1�.

q

q

q=q’

FIG. 10. Two closed loops which have no contribution for the
two-particle Green’s function �C3�.

REZANIA, LANGARI, AND THALMEIER PHYSICAL REVIEW B 79, 094401 �2009�

094401-10



1

�
�
k,m

gn,��k + q,i	n + ikm�gn,��k,ikm�

=
1

N
�

k

Zk+q,�Zk,��Uk+q,�
2 Uk,�

2 nB�
k,�� − nB�
k+q,��
i	n − 
k+q,� + 
k,�

+ Vk+q,�
2 Uk,�

2 nB�
k,�� − nB�− 
k+q,��
i	n + 
k+q,� + 
k,�

+ Uk+q,�
2 Vk,�

2 nB�− 
k,�� − nB�
k+q,��
i	n − 
k−q,� − 
k,�

− Vk+q,�
2 Vk,�

2 nB�− 
k,�� − nB�− 
k−q,��
i	n + 
k−q,� − 
k,�

	 . �C5�

The vertex correction for the first term in the Eq. �C1� is
shown in Fig. 8 and it is written as

�−
1

�
�
k,m

gn,��− k + q,i	n − ikm�ga,��k,ikm�	2

���,���q,i	n�

= � 1

N
�

k

Zk+q,�Zk,��− Uk+q,�
2 Uk,�Vk,�

nB�
k,�� − nB�− 
k+q,��
i	n − 
k+q,� − 
k,�

+ Uk+q,�
2 Uk,�Vk,�

nB�
k,�� − nB�
k+q,��
i	n + 
k+q,� − 
k,�

− Uk+q,�
2 Uk,�Vk,�

nB�− 
k,�� − nB�− 
k+q,��
i	n − 
k−q,� + 
k,�

− Vk+q,�
2 Uk,�Vk,�

nB�− 
k,�� − nB�
k−q,��
i	n + 
k−q,� + 
k,�

	�2

���,���q,i	n� . �C6�

The vertex correction for the second term in Eq. �C1� is
represented in Fig. 9 and is as follows:

�−
1

�
	2

�
k,m,p,l

gn,��− p + q,i	n − ipl�ga,��k,ikm�gn,�

��− k + q,i	n − ikm�ga,��p,ipl����,���q,i	n� . �C7�

Figure 10 has two closed loops that represent the first-order
correction for the two-particle Green’s function, connected
by an interaction line �Uq�. This diagram is zero because the
first-order correction induced to HU for the spin susceptibil-
ity is written by

�T��xy�q,���xy�− q,0���

= �
k,p,k1,p1,q1,�,�


 d�1�Ttk+q,x
† ���tk,y���Uq1

tk1+q1,�
†

���1�tp1−q1,�
† ��1�tp1,���1�tk1,���1�tp−q,x

† �0�tp,y�0�� .

�C8�

To obtain the Feynman diagram in Fig. 10, we should con-
sider the contraction with q1=q. This constraint requires that
the term tp−q,x

† �0�tp,y�0� is contracted by tp1−q1,�
† ��1�tp1,���1�

therefore �=x=y and this is a contradiction. However, we

note that the vertex correction in Eqs. �C6� and �C7� for the
z component of susceptibility are exactly the same and van-
ish in Eq. �C1�.

The dynamical structure factor is defined by

s��q,	� = − 2 Im �Ret�q,	� = − 2 Im ��q,i	n → 	 + i0+� .

�C9�

It is proportional to the contribution of localized spins in the
inelastic neutron differential cross section. For each q the
dynamical structure factor has peaks at certain energies
which represent collective excitations for bosonic triplet gas
which correspond to the spin excitations of the original
model. The static structure factor is defined by

s��q� = �S��q�S��− q�� = ����q,0�

= −
1

�
�

n

1

2�



−�

�

d	
− 2 Im ����q,i	n → 	 + i0+�

i	n − 	

= − 

−�

+�

d	
nB�	�

�
Im ����q,i	n → 	 + i0+� . �C10�

Combining Eqs. �45� and �C10� the z component of the struc-
ture factor is given by

sz�q� = Zq,z�2Uq,zVq,z + Uq,z
2 + Vq,z

2 ��nB�
q,z� − nB�− 
q,z��

−
2

N
�

k

Uk,zUk+q,zVk+q,zVk,z��nB�
k,z� − nB�− 
k+q,z��nB�
k,z + 
k+q,z� − �nB�− 
k,z� − nB�− 
k+q,z��nB�− 
k,z + 
k+q,z�

− �nB�
k,z� − nB�
k+q,z��nB�
k,z − 
k+q,z� + �nB�− 
k,z� − nB�
k+q,z��nB�− 
k,z − 
k+q,z��

GREEN’s FUNCTION APPROACH TO THE… PHYSICAL REVIEW B 79, 094401 �2009�

094401-11



−
2

N
�

k

Zk,zZk+q,z�Uk,z
2 Uk+q,z

2 �nB�
k,z� − nB�− 
k+q,z��nB�
k,z + 
k+q,z�

+ Uk,z
2 Vk+q,z

2 �nB�− 
k,z� − nB�− 
k+q,z��nB�− 
k,z + 
k+q,z� + Uk+q,z
2 Vk,z

2 �nB�
k,z� − nB�
k+q,z��nB�
k,z − 
k+q,z�

− Vk+q,z
2 Vk,z

2 �nB�− 
k,z� − nB�
k+q,z��nB�− 
k,z − 
k+q,z�� . �C11�
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